On the inverse eigenvalue problem for block graphs

Jephian C．－H．Lin 林晉宏

Department of Applied Mathematics，National Sun Yat－sen University
January 18， 2022
2021 Annual Meeting of Taiwanese Mathematical Society，
Taipei，Taiwan

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{i j}\right]$ such that

$$
a_{i j} \begin{cases}\neq 0 & \text { if } i j \in E(G), i \neq j \\ =0 & \text { if } i j \notin E(G), i \neq j \\ \in \mathbb{R} & \text { if } i=j\end{cases}
$$

IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{i j}\right]$ such that

$$
a_{i j} \begin{cases}\neq 0 & \text { if } i j \in E(G), i \neq j \\ =0 & \text { if } i j \notin E(G), i \neq j \\ \in \mathbb{R} & \text { if } i=j\end{cases}
$$

IEP- G : What are the possible spectra of a matrix in $\mathcal{S}(G)$?

Ordered multiplicity list

Supergraph Lemma

Lemma (BFHHLS 2017)

Let G and H^{\prime} be two graphs with $V(G)=V\left(H^{\prime}\right)$ and
$E(G) \subseteq E\left(H^{\prime}\right)$. If $A \in \mathcal{S}(G)$ has the SSP, then there is a matrix $A^{\prime} \in \mathcal{S}\left(H^{\prime}\right)$ such that

- $\operatorname{spec}\left(A^{\prime}\right)=\operatorname{spec}(A)$,
- A^{\prime} has the SSP, and
- $\left\|A^{\prime}-A\right\|$ can be chosen arbitrarily small.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
\sim 1 & \epsilon & 0 & 0 \\
\epsilon & \sim 2 & \epsilon & 0 \\
0 & \epsilon & \sim 3 & \epsilon \\
0 & 0 & \epsilon & \sim 4
\end{array}\right]
$$

SSP will be defined later

Matrix derivative

Definition

Let U and W be open subsets in vector spaces over \mathbb{R} and $F: U \rightarrow W$ a function.
The derivative of F at a point $u_{0} \in U$ is

$$
\dot{F} \cdot \mathrm{~d}=\lim _{t \rightarrow 0} \frac{F\left(\mathrm{u}_{0}+t \mathrm{~d}\right)-F\left(\mathrm{u}_{0}\right)}{t},
$$

which is a linear operator sending a direction to the directional derivative.

Example: $F(K)=e^{K}$

Define $F: \operatorname{Skew}_{n}(\mathbb{R}) \rightarrow \operatorname{Mat}_{n}(\mathbb{R})$ by $F(K)=e^{K}$.
Then \dot{F} at O is $\dot{F} \cdot K=K$ since

$$
\begin{aligned}
\dot{F} \cdot K & =\lim _{t \rightarrow 0} \frac{e^{O+K t}-e^{O}}{t} \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[\frac{(K t)^{0}}{0!}+\frac{(K t)^{1}}{1!}+\frac{(K t)^{2}}{2!}+\frac{(K t)^{3}}{3!}+\cdots-I\right] \\
& =\lim _{t \rightarrow 0}\left[\frac{K^{1}}{1!}+\frac{K^{2} t^{1}}{2!}+\frac{K^{3} t^{2}}{3!}+\cdots\right]=K .
\end{aligned}
$$

Inverse function theorem

Theorem (Inverse function theorem)
Let $F: U \rightarrow W$ be a smooth function. If \dot{F} at a point $u_{0} \in U$ is invertible, then F is locally invertible around u_{0}.

Theorem (FHLS 2021+)
Let $F: U \rightarrow W$ be a smooth function. If \dot{F} at a point $u_{0} \in U$ is surjective, then F is locally surjective around u_{0}.

Sketch of the proof

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]} \\
A
\end{gathered} \xrightarrow{\left[\begin{array}{cccc}
\sim 1 & \epsilon & 0 & 0 \\
\epsilon & \sim 2 & \epsilon & 0 \\
0 & \epsilon & \sim 3 & \epsilon \\
0 & 0 & \epsilon & \sim 4
\end{array}\right]} \begin{gathered}
A^{\prime}=M-B
\end{gathered}
$$

- \mathcal{S} : symmetric matrices that is nonzero only on the blue entries

$$
e^{-K^{\prime}} A e^{K^{\prime}}+B^{\prime}=M .
$$

- Choose proper M and let $A^{\prime}=M-B^{\prime}$.

Sketch of the proof

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]} \\
A
\end{gathered} \xrightarrow{\left[\begin{array}{cccc}
\sim 1 & \epsilon & 0 & 0 \\
\epsilon & \sim 2 & \epsilon & 0 \\
0 & \epsilon & \sim 3 & \epsilon \\
0 & 0 & \epsilon & \sim 4
\end{array}\right]} \begin{gathered}
A^{\prime}=M-B
\end{gathered}
$$

- \mathcal{S} : symmetric matrices that is nonzero only on the blue entries
- Define $F: \mathcal{S} \times \operatorname{Skew}_{n}(\mathbb{R}) \rightarrow \operatorname{Sym}_{n}(\mathbb{R})$ by $F(B, K)=e^{-K} A e^{K}+B$.
- For any M nearby A, there is B^{\prime} and K^{\prime} such that

$$
e^{-K^{\prime}} \Lambda e^{K^{\prime}}+B^{\prime}=M
$$

Sketch of the proof

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]} \\
A
\end{gathered} \xrightarrow{\left[\begin{array}{cccc}
\sim 1 & \epsilon & 0 & 0 \\
\epsilon & \sim 2 & \epsilon & 0 \\
0 & \epsilon & \sim 3 & \epsilon \\
0 & 0 & \epsilon & \sim 4
\end{array}\right]} \begin{gathered}
A^{\prime}=M-B
\end{gathered}
$$

- \mathcal{S} : symmetric matrices that is nonzero only on the blue entries
- Define $F: \mathcal{S} \times \operatorname{Skew}_{n}(\mathbb{R}) \rightarrow \operatorname{Sym}_{n}(\mathbb{R})$ by $F(B, K)=e^{-K} A e^{K}+B$.
- SSP $\Longleftrightarrow \dot{F}$ is surjective!

For any M nearby A, there is B^{\prime} and K^{\prime} such that

Sketch of the proof

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]} \\
A
\end{gathered} \xrightarrow{\left[\begin{array}{cccc}
\sim 1 & \epsilon & 0 & 0 \\
\epsilon & \sim 2 & \epsilon & 0 \\
0 & \epsilon & \sim 3 & \epsilon \\
0 & 0 & \epsilon & \sim 4
\end{array}\right]} \begin{gathered}
A^{\prime}=M-B
\end{gathered}
$$

- \mathcal{S} : symmetric matrices that is nonzero only on the blue entries
- Define $F: \mathcal{S} \times \operatorname{Skew}_{n}(\mathbb{R}) \rightarrow \operatorname{Sym}_{n}(\mathbb{R})$ by $F(B, K)=e^{-K} A e^{K}+B$.
- SSP $\Longleftrightarrow \dot{F}$ is surjective!
- For any M nearby A, there is B^{\prime} and K^{\prime} such that

$$
e^{-K^{\prime}} A e^{K^{\prime}}+B^{\prime}=M .
$$

Sketch of the proof

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]} \\
A
\end{gathered} \xrightarrow{\left[\begin{array}{cccc}
\sim 1 & \epsilon & 0 & 0 \\
\epsilon & \sim 2 & \epsilon & 0 \\
0 & \epsilon & \sim 3 & \epsilon \\
0 & 0 & \epsilon & \sim 4
\end{array}\right]} \begin{gathered}
A^{\prime}=M-B
\end{gathered}
$$

- \mathcal{S} : symmetric matrices that is nonzero only on the blue entries
- Define $F: \mathcal{S} \times \operatorname{Skew}_{n}(\mathbb{R}) \rightarrow \operatorname{Sym}_{n}(\mathbb{R})$ by $F(B, K)=e^{-K} A e^{K}+B$.
- SSP $\Longleftrightarrow \dot{F}$ is surjective!
- For any M nearby A, there is B^{\prime} and K^{\prime} such that

$$
e^{-K^{\prime}} A e^{K^{\prime}}+B^{\prime}=M .
$$

- Choose proper M and let $A^{\prime}=M-B^{\prime}$.

The derivative of $F(B, K)=e^{-K} A e^{K}+B$

At (O, O),

$$
\dot{F}=K^{\top} A+A K+B
$$

- $K \in \operatorname{Skew}_{n}(\mathbb{R})$
- $B \in \mathcal{S}^{\mathrm{cl}}(G)$, where $\mathcal{S}^{\mathrm{cl}}(G)$ is the topological closure of $\mathcal{S}(G)$. That is,

$$
\mathcal{S}^{\mathrm{cl}}(G)=\left\{A=\left[a_{i, j}\right] \in \operatorname{Sym}_{n}(\mathbb{R}): a_{i, j}=0 \Longleftrightarrow\{i, j\} \in E(\bar{G})\right\} .
$$

The derivative of $F(B, K)=e^{-K} A e^{K}+B$

At (O, O),

$$
\dot{F}=K^{\top} A+A K+B
$$

- $K \in \operatorname{Skew}_{n}(\mathbb{R})$
- $B \in \mathcal{S}^{\mathrm{cl}}(G)$, where $\mathcal{S}^{\mathrm{cl}}(G)$ is the topological closure of $\mathcal{S}(G)$. That is,

$$
\mathcal{S}^{\mathrm{cl}}(G)=\left\{A=\left[a_{i, j}\right] \in \operatorname{Sym}_{n}(\mathbb{R}): a_{i, j}=0 \Longleftrightarrow\{i, j\} \in E(\bar{G})\right\} .
$$

\dot{F} is surjective at (O, O) $\left\{K^{\top} A+A K: K \in \operatorname{Skew}_{n}(\mathbb{R})\right\}+\mathcal{S}^{\mathrm{cl}}(G)=\operatorname{Sym}_{n}(\mathbb{R})$.

Strong spectral property (SSP)

Definition

A symmetric matrix A has the strong spectral property (SSP) if $X=O$ is the only real symmetric matrix that satisfies the following matrix equations:

- $A \circ X=O, I \circ X=O$,
- $A X-X A=O$.

Proposition (FHLS 2021+)
A symmetric matrix $A \in \mathcal{S}(G)$ has the SSP if and only if

$$
\left\{K^{\top} A+A K: K \in \operatorname{Skew}_{n}(\mathbb{R})\right\}+\mathcal{S}^{\mathrm{cl}}(G)=\operatorname{Sym}_{n}(\mathbb{R})
$$

Extended SSP

Definition

Let G and H be two graphs such that $V(G)=V(H)$ and $E(G) \subseteq E(H)$. A matrix $A \in \mathcal{S}(G)$ has the SSP with respect to H if $X=O$ is the only real symmetric matrix that satisfies the following matrix equations:

- $X \in \mathcal{S}^{\mathrm{cl}}(\bar{H}), I \circ X=O$,
- $A X-X A=O$.

Proposition (FHLS 2021+)
A symmetric matrix $A \in \mathcal{S}(G)$ has the $S S P$ with respect to H if and only if

$$
\left\{K^{\top} A+A K: K \in \operatorname{Skew}_{n}(\mathbb{R})\right\}+\mathcal{S}^{\mathrm{cl}}(H)=\operatorname{Sym}_{n}(\mathbb{R})
$$

Extended supergraph lemma

Lemma (L, Oblak, and Šmigoc 2021)
Let G, H, and H^{\prime} be three graphs such that
$V(G)=V(H)=V\left(H^{\prime}\right)$ and $E(G) \subseteq E(H) \subseteq E\left(H^{\prime}\right)$. If $A \in \mathcal{S}(G)$ has the SSP with respect to H, then there is a matrix $B \in \mathcal{S}^{\mathrm{cl}}\left(H^{\prime}\right)$ such that
$-\operatorname{spec}(A)=\operatorname{spec}\left(A^{\prime}\right)$,

- A^{\prime} has the SSP, and
- $\| A^{\prime}$ - $A \|$ can be chosen arbitrarily small.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
\sim 1 & \sim 0 & \epsilon & 0 \\
\sim 0 & \sim 1 & 0 & \epsilon \\
\epsilon & 0 & \sim 2 & \sim 0 \\
0 & \epsilon & \sim 0 & \sim 2
\end{array}\right]
$$

Appending a leaf

Theorem (BFHHLS 2017)
Let H be a graph and H^{\prime} be obtained from H by appending a leaf. If $A \in \mathcal{S}(H)$ has the $S S P$ and $\lambda \notin \operatorname{spec}(A)$, then there is a matrix $A^{\prime} \in \mathcal{S}\left(H^{\prime}\right)$ such that $\operatorname{spec}\left(A^{\prime}\right)=\operatorname{spec}(A) \cup\{\lambda\}$.

Appending a clique

$$
\begin{gathered}
A^{\prime} \in \mathcal{S}\left(H^{\prime}\right) \\
\operatorname{SSP} \\
\operatorname{spec}\left(A^{\prime}\right)=\operatorname{spec}(A) \cup\left\{\lambda^{(s)}\right\}
\end{gathered}
$$

Theorem (L, Oblak, and Šmigoc 2021)
Let H be a graph and H^{\prime} be obtained from H by appending a clique K_{s}. If $A \in \mathcal{S}(H)$ and $\lambda \notin \operatorname{spec}(A) \cup \operatorname{spec}(A(v))$ for all v, then there is a matrix $A^{\prime} \in \mathcal{S}\left(H^{\prime}\right)$ such that $\operatorname{spec}\left(A^{\prime}\right)=\operatorname{spec}(A) \cup\left\{\lambda^{(s)}\right\}$.

allows ordered multiplicity list (2, 2, 2, 2, 2)

A	0	O	$\sim A$		0		
					ϵ	.	ϵ
	λ	0		ϵ	$\sim \lambda$		~ 0
0			0				
	0	λ		ϵ	~ 0		$\sim \lambda$

allows ordered multiplicity list (2,2,2,2,2)

Thanks!

References I

W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, and B. Shader.
Generalizations of the Strong Arnold Property and the minimum number of distinct eigenvalues of a graph.
Electron. J. Combin., 24:\#P2.40, 2017.
囲 J. C.-H. Lin, P. Oblak, and H. Šmigoc.
On the inverse eigenvalue problem for block graphs. Linear Algebra Appl., 631:379-397, 2021.

